

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

On the Twist-Boat Conformation of the Tetrahydropyran Cycle in the Trioxa-Bis-Spiroketal Series

M. F. Grenier-loustalot^a; F. Metras^a; L. Cottier^a; G. Descotes^b

^a Laboratoire de Chimie Organique Physique, ERA CNRS 895 Institut Universitaire de Recherche Scientifique, Avenue Philippon, PAU, (France) ^b Laboratoire de Chimie Organique, ERA CNRS 689 ESCIL, Université de Chimie Organique, VILLEURBANNE, (France)

To cite this Article Grenier-loustalot, M. F. , Metras, F. , Cottier, L. and Descotes, G.(1982) 'On the Twist-Boat Conformation of the Tetrahydropyran Cycle in the Trioxa-Bis-Spiroketal Series', *Spectroscopy Letters*, 15: 12, 963 – 967

To link to this Article: DOI: 10.1080/00387018208068031

URL: <http://dx.doi.org/10.1080/00387018208068031>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ON THE TWIST-BOAT CONFORMATION OF THE TETRAHYDROPYRAN CYCLE IN THE TRIOXA-BIS-SPIROKETAL SERIES

Key words : ^1H and ^{13}C NMR, X-rays, twist, boat conformation tetrahydropyran.

M.F. Grenier-Loustalot, F. Metras^a, L. Cottier, G. Descotes^b

a) Laboratoire de Chimie Organique Physique, ERA CNRS 895
Institut Universitaire de Recherche Scientifique
Avenue Philippon, 64000 PAU (France)

b) Laboratoire de Chimie Organique, ERA CNRS 689
ESCIL, Université de Chimie Organique, Lyon I
43, Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE (France)

INTRODUCTION

In the solid state the trioxa-bis-spiroketal 2 (fig.1) has a twist-boat conformation (tetrahydropyran cycle) and its infrared absorption and nuclear magnetic resonance (^1H at 250 MHz, ^{13}C at 15,06 MHz) spectra let forsee the same conformation in solution¹.

So, molecule 2 is a particularly interesting model for establishing structure spectroscopic properties relationships, by comparison with its diastereoisomer 1 which has a chair conformation². Besides, compounds such 1 and 2 which have a bis-spiroketal structure can be considered as synthons for synthesis of new ionophore polyethers. This has led us to study more thoroughly these two molecules by ^1H NMR at 500 MHz. If for 1 one could analyse entirely the spectrum, the 8,8' and 10,10' proton signals have been only analysed for 2*.

* At 500 MHz the 9,9' nuclei signals of the tetrahydropyran cycle and the 3,3' nuclei signal of the tetrahydrofuran cycles still resone at nearly the same frequency.

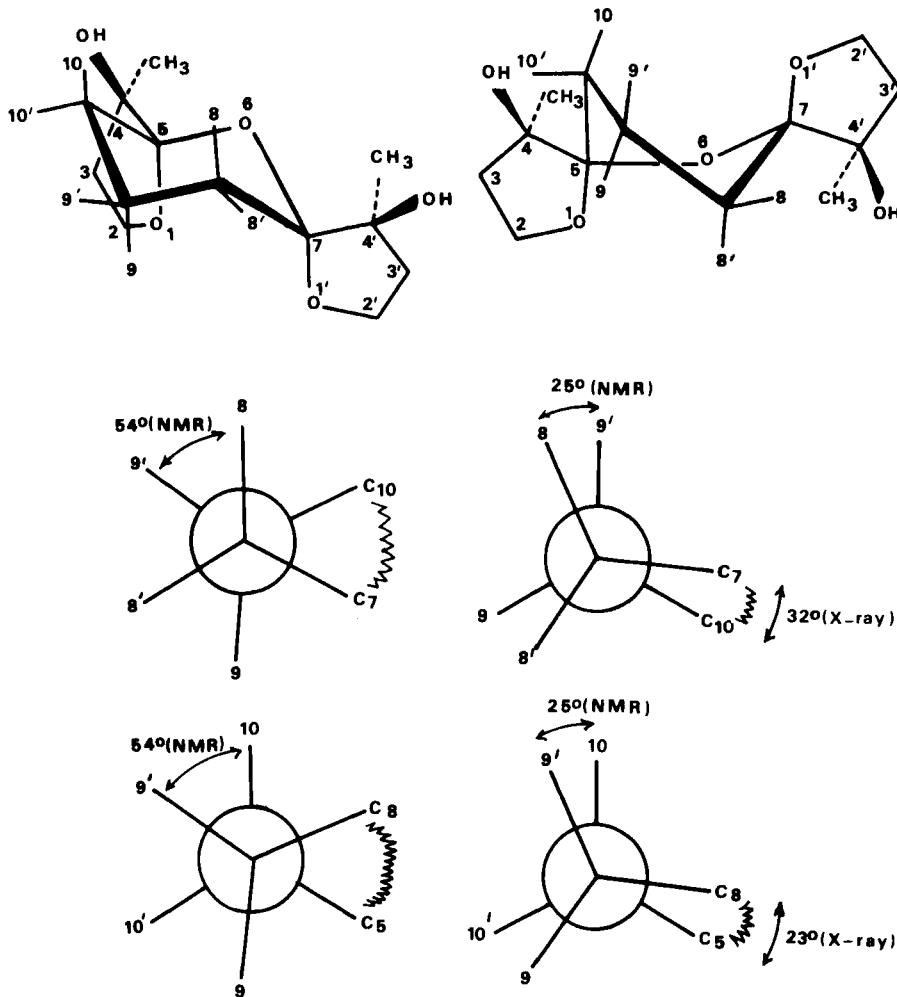


Figure 1- Conformations and dihedral angles of trioxa-bis-spiroketals 1 and 2

RESULTS AND DISCUSSION

The coupling constants observed after a LACOON III type calculation (Table I), very different for 1 and 2, indicate strong structures modifications between these two molecules and are consistent with an important flattening of the dihedral angles ψ (8,9) and

TABLE I- ^1H NMR spectra at 500 MHz of trioxa-bis-spiroketal 1 and 2. Solvent DMSO (Concentration 10 %). Coupling constants (Hz).

Compounds	H_8H_9	$\text{H}_8\text{H}_9'$	H_8H_9	$\text{H}_8\text{H}_9'$	H_8H_8	$\text{H}_9\text{H}_9'$	R	ψ
<u>1</u>	13,01	4,52	5,20	3,65	-13,6	-12,9	1,71	54
<u>2</u>	0,86	9,81	10,27	7,62	-13,4	*	0,42	25
Compounds	H_{10}H_9	$\text{H}_{10}\text{H}_9'$	H_{10}H_9	$\text{H}_{10}\text{H}_9'$	$\text{H}_{10}\text{H}_{10}'$	$\text{H}_9\text{H}_9'$	R	ψ
<u>1</u>	13,01	4,52	5,20	3,65	-13,6	-12,9	1,71	54
<u>2</u>	7,62	9,81	10,27	0,86	-13,4	*	0,42	25

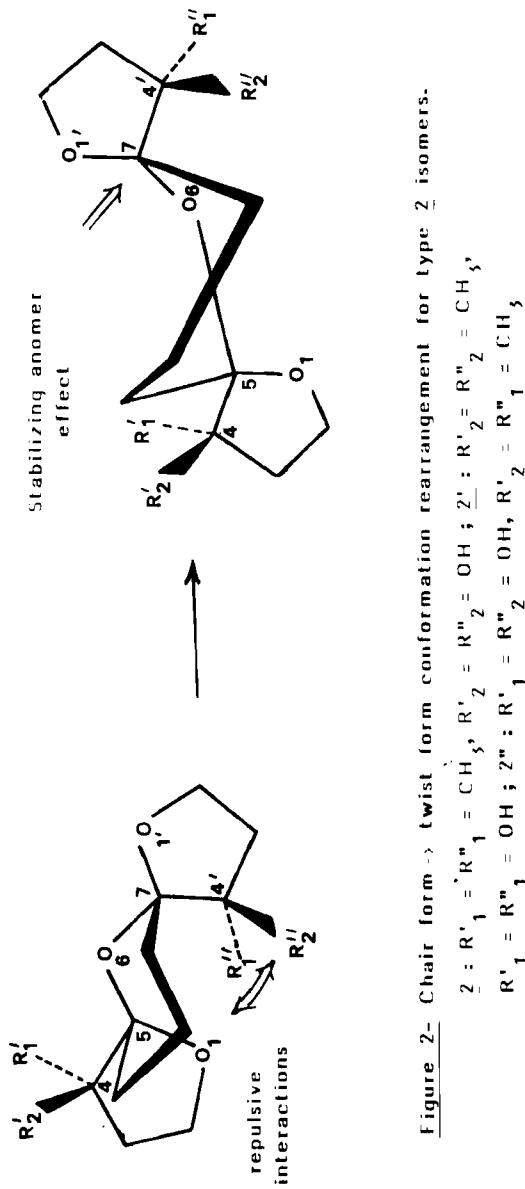

* no determined

TABLE II- ^{13}C NMR spectra at 15,06 MHz of trioxa-bis-spiroketal 1 and 2. Solvent DMSO (Concentration 10 %) Chemical shifts / TMS (ppm).

Compounds	C_2C_2	$\text{C}_3\text{C}_3'$	$\text{C}_4\text{C}_4'$	CH_3	C_5	C_7	C_8	C_9	C_{10}
<u>1</u>	63,5	38,0	79,3	21,4	106,8	106,8	26,0	15,8	26,0
<u>2</u>	63,2	37,8	78,5	21,5	107,3	107,3	20,5	12,2	20,5
$\delta \text{C}_2\text{C}_2$ (<u>1</u>)	-0,3	-0,2	-0,8	+0,1	+0,5	+0,5	-5,5	-3,6	-5,5

ψ (9,10) on passing from 1 to 2. These dihedral angles calculated following the R ratio method proposed by G.B. Lambert² are in good agreement for 2 with the cristallographic data $|\psi(\text{NMR}) = 25^\circ$, $\psi(\text{X-ray})^* = 27^\circ 5'|$ and so confirm the transferability from solid state to solution of the twist-boat conformation of 2.

* Arithmetic average of the dihedral angle values $\psi(8,9) = 32^\circ$ and $\psi(9,10) = 23^\circ$ obtained for 2 in solid state by X-ray diffraction¹. It is likely that molecule 2 slightly rearranges from solid state to solution where it admits a C_2 axis of symetry passing by O_6 and C_9 atoms.

These results also allow to confirm that the strong shielding effect ($-5,5 \leq \Delta\delta^{13}\text{C} \leq -3,6$) observed in ^{13}C NMR (Table II) on the C_8 , C_9 and C_{10} nuclei of 1 and 2 is a characteristic information of a twist boat conformation. Such an observation had already been made by Roberts and al.³, Booth and al.⁴ in cyclohexane series, but, in our knowledge, it is the first time that it is made upon a molecule whose twist-boat conformation is demonstrated in solid state.

In the considered trioxa-bis-spiroketal series, six diastereoisomers among which the compounds 1 and 2 foreseeable and have been isolated¹. Three of them, among which 1, have the chair conformation, the three others, among which 2, adopting the twist-boat conformation. By comparison with an hypothetic chair form (fig. 2) the conformational rearrangement of the type 2 isomers into a twist boat conformation favours, on one hand, the lowering of repulsive Van der Waals interactions between the O_1 atom and the CH_3 and OH groups linked to the C_4 atom, on the other hand, the stabilizing anomer effect $\text{O}_6/\text{C}_7\text{O}_1$.

ACKNOWLEDGEMENTS

The authors thank the BRUKER Society for registration at 500 MHz of the ^1H NMR spectra of molecules 1 and 2.

REFERENCES

1. L. Cottier, G. Descotes, M.F. Grenier-Loustalot, F. Metras, *Tetrahedron*, 37, 2515 (1981)
2. a) J.B. Lambert, *J. Am. Chem. Soc.*, 89, 1836 (1967)
b) J.B. Lambert, *Acc. Chem. Res.*, 4, 87 (1971)
3. J.D. Roberts, F.J. Weigert, J.I. Kroschwitz and H.J. Reich, *J. Am. Chem. Soc.*, 92, 1338 (1970)
4. H. Booth, J.R. Everett and R.A. Fleming, *Org. Magn. Res.*, 12, 2, 63 (1979)

Received: July 12, 1982

Accepted: August 26, 1982